비례위험모형을 이용한 수도권 민간 주택건설

입지 확률모형의 개발과 적용

조경훈

대도시권 지역의 무질서한 도시확산의 문제는 계획가, 정책결정자, 그리고 시민 모두가 관심을 갖고 있는 문제로 볼 수 있었다. 이러한 문제에 대처하기 위해서 많은 국가들에서는 다양한 도시성장관리정책을 수립하고 실행하고 있다. 본 연구에서는 개별수요의 영향적 확산을 계획적으로 수용하기 위한 도시형성관리정책의 목표를 달성하기 위해서는 민간개발의 입지요인에 대한 분석을 기초로 황후 민간개발의 입지를 적절적으로 예측할 필요가 있음을 강조하였다. 이를 위해 1994년부터 2002년까지 수도권 비도시지역에서 이루어진 민간주택건설사업에 대한 공종자료와 속성자료를 구축하였으며, 생존분석의 비례위험모형을 적용하여 택지개발 확률 모형을 추정하였다. 추정한 개발확률모형을 용도규제의 변경 가능성에 고려한 시나리오에 따라 설정된 개발 가용지 상황별로 적용하였다.

이 논문에서 제시하고 있는 주요한 연구결과 및 정책적 시사점은 다음과 같다. 첫째, 도시개발을 주도하고 있는 민간 주택건설의 입지요인은 생존분석의 비례위험모형을 적용하여 성공적으로 검증한 결과, 민간개발은 왕복적 입지 여건 및 수도권정비계획 수단 등과 같은 서기적인 변수보다는 지역적인 기반시설 및 공영택지와의 인접성 등의 변수에 따라 입지하는 경향을 확인하였다. 이는 민간개발의 입지를 규제하거나 유도하는 데 있어서 시각적인 경책수단이 보다 효과적일 수 있음을 시사하는 결과로 해석할 수 있으며, 기반시설 및 공영택지지구 주변지역에 대한 관리방안을 사전에 수립하는 것이 매우 중요하다는 점을 재확인하였다. 둘째, 통계적 적합도 및 공간적 적합도의 측면에서 타당한 개발확률모형을 개발수요량과 결합하여 황후 시나리오별 민간개발의 입지를 예측하는데 활용할 수 있는 방법 및 결과를 제시하였다.

주요어: 개발확률모형, 비례위험모형, 도시성장관리, 민간주택건설사업, 수도권
* 서울대학교 공과대학 지구환경시스템공학부 박사, joganga@naver.com
I. 서 론

1980년대 후반 이후 서울대도시권 지역의 개발과정에서는 정부의 계획 및 규제와 민간개발주체의 이윤극대화를 위한 개발행위가 주도적인 힘으로 작용하였다. 즉, 1980년 이후 공영택지개발방식을 통해 대도시 주변지역의 개발수요를 계획적으로 수용하고, 민간의 개발행위를 규제 또는 유도하고자 했던 정부의 노력은 1980년대 후반 5개 신도시 건설사업에 이르러 정점을 이루었다. 동시에, 민간의 시차를 두고 민간개발주체는 공공이 조성한 택지 외곽의 사업성이 높은 지역에서 주택건설을 활발하게 추진하였다. 이러한 개발양상은 1990년대 중반 이후 '난개발'이라는 이름으로 사회적 이슈로 등장하였으며, 대도시 주변지역에서의 무계획적인 난개발이 초래하는 교통혼잡과 환경오염 등과 같은 부정적인 외부효과(negative externalities)와 민간주택건설주체의 무임승차(free-riding)의 문제를 중심으로 개발의 양상, 원인, 결과, 정책적 대응과 관련된 다양한 논의가 진행되어 왔다.

“도시행정관리의 맥락에서 민간 개발수요의 외연적 확산을 계획적이고 환경친화적으로 수용하기 위해서는 입지요인에 대한 지식을 바탕으로 민간 개발이 언제 어디에서 이루어질 것인가를 사전에 예측할 필요가 있다.”

 이를 위해 1990년대 수도권 비도시지역의 무분별한 개발을 주도하였던 민간 주택건설의 입지요인을 포함하는 개발확률모형을 정립하여 향후 민간 개발의 입지를 사전적으로 예측하기 위한 방법론을 제시하고, 가용지 시나리오별로 개발확률모형을 적용하여 도시행정관리정책의 시사점을 도출하고자 한다.

II. 이론 및 방법론

1. 주택건설 임지 이론 및 모형

도시주변지역의 주택건설과정에는 토지소유자, 건설업자, 가구, 중앙정부, 지방정부 등 다양한 행위주체의 상호작용과 역학관계가 내재하고 있다. 특히 주택생산단계에서는 주택건설업자와 정부가 핵심적인 역할을 하게 된다. 정부의 토지 및 주택정책은 건설업자의 의사결정에 영향을 미치 주택건설의 확률을 낮춰 개발을 억제하거나 지연시키기도 하고, 반면 개발을 유도 또는 촉진할 수도 있다. 이와 같이 이론적대화물 의사결정의 목표로 하는 민간개발업자에게 있어서 개발임지와 시점을 결정하는 문제는 매우 중요한 의사결정 요소이다.

다수의 토지이용모형은 목적에 따라 크게 현상분석모형과 예측 모형으로 구분할 수 있다(이소영, 1993). 첫째, 토지이용 현상분석 모형은 토지이용의 실정을 분석하고, 토지이용에 관한 문제점이나 후속 토지이용계획에서 요구되는 유용한 정보를 얻는 것이 목적이다. 이러한 모형에서는 토지이용변화요인을 규명하는 다변량 통계 분석이 결합되는 경우가 많다. 둘째, 토지이용 예측모형은 모형의 정책적 활용방안에 초점을 맞추어 정책의 효과를 사전적으로 확인하는 것이 목적이다. 따라서 정책수단과 관련된 변수가 외생변수 또는 내생변수로 모형에 포함되는 것이 일반적이다. 도시계획 분야에서도 미시적인 공간단위와 토지이용주체를 고려하여 토지이용 변화를 예측하여 공간정책의 효과를 검증할 수 있는 다양한 모형들이 개발되어 왔다. 1) 그동안 제시되어 온 많은 모형 중에서 최근 대표적인 도시개발예측모형으로 주목받고 있는 모형은 CUF(California Urban Future)와 UrbanSim 모형이다. 2)

임지 변화를 대상으로 한 기존연구들에서 채택하고 있는 주요한 방법론은 GIS를 이용한 자료구축 및 공간분석과 로짓모형 등은 이용한 변화요인의 분석이다(김영표, 2000; 사공호상, 2002 등). 그러나 토지 및 주택개발은 시간적으로 다양한 요인이 반영되는 동태적인 과정이기 때문에, 개발의 공간적인 측면(임지) 뿐만 아니라, 시간적인 측면(시점)까지도 분석과정에 포함되어야 한다.

1) 초기의 토지이용모형에 대한 내용은 국토개발연구원(1981)의 보고서에 자체히 설명되어 있다.
다. 따라서 본 연구에서는 민간개발주체의 의사결정단위로 본 수 있는 주택건설사업지를 미시적인 공간단위로 설정하여 개발특성 및 요인에 관한 자료를 구축하고, 시점을 고려할 수 있는 통계기
법인 생존분석을 적용하여 민간개발 요인을 실증적으로 분석하고 추정결과를 개발예측에 적용하고자 한다.

2. 비례위험모형을 이용한 입지 학률모형

다양한 분야에서 특정 시점에서 사건(예컨대, 사망, 기업의 부
도 등)의 발생여부를 예측하고 사건의 발생에 중요한 영향을 미
치는 요인을 규명하려는 시도가 계속되고 있다. 이러한 문제를 통
계적으로 해결하기 위해서 로지스틱 회귀분석 등이 주로 이용되
었다. 로지스틱 회귀모형은 특정 시점에서의 사건 발생여부를
고려하는 데 비해서 생존분석의 경우 특정 사건의 구체적인 시간
정보를 이용할 수 있는 장점이 있다. 따라서, 생존시간에 대한 정
보가 주어져 있고 결단자료가 포함된 경우에는 생존분석이 보다
적절하다.

생존분석(survival analysis)은 어떤 사건이 발생할 때까지의 시
간자료(T)를 분석하는 통계적 방법으로서 사건의 발생여부에 대
해 불확실한 자료(중도절단 자료, censored data)가 포함되어 있
다는 특징을 가지고 있다. 생존시간의 통계적인 분석은 의학 및
생리학 분야에서뿐만 아니라 공학이나 사회학 등의 분야에서도
또한 응용되고 있다. 예를 들면, 서로 다른 치료방법으로 치료를
받은 암환자의 생존시간 비교, 공장에서 제조된 전구의 수명시간
분석, 또는 결혼의 지속기간을 연구하는 문제 등에 생존분석 기법
이 적용되어 왔다(허명희, 1992; 송경영 외, 1999).

확률변수인 생존시간 T는 확률밀도함수 f(t)와 누적분포함수
\[F(t) \]을 갖는다. \(T \)의 생존함수(survival function) \(S(t) \)와 위험함수(hazard function) \(h(t) \)는 다음과 같이 정의된다.

\[S(t) = P(T \geq t) = 1 - F(t) \quad \cdots \text{<수식 1>\hspace{1cm}}
\]

\[h(t) = \lim_{\Delta t \to 0} \frac{Pr(t \leq T < t + \Delta t \mid T \geq t)}{\Delta t} = \frac{f(t)}{S(t)} \quad \cdots \text{<수식 2>\hspace{1cm}}
\]

생존함수는 특정 개체가 \(t \)시점까지 생존할 확률이며, 위험함수는 특정 개체가 \(t \)시점까지는 생존했다가 \(t \)시점 바로 직후에 사망하게 되는 순간위험률을 의미한다.

두 가지 사건 사이의 시간간격(time interval)은 여러 가지 요인에 영향을 받는다. 예를 들어 결혼기간은 경제적, 사회적, 그리고 감정적인 요인 등에 의하여 영향을 받는다(송경일 외, 1999). 이와 같이 기간과 관련되어 여러 예후변수(공변수)가 있을 때 여러 변수의 영향을 동시에 알아보는 다변량 분석법(multivariate analysis)이 특히 요구되며, 이러한 목적에 Cox(1972) 모형이 유용하다. Cox 모형은 생존시간에 대해 어떠한 분포형태도 가정하지 않으므로 비모수적이지만 모형에 근거하여 회귀계수를 추정한다는 점이 모수적 방법과 유사하여 비모수와 모수의 중간형태인 준모수적(semiparametric) 모형이라고 일컬어지고 있다. 또한 Cox 회귀모형은 비례적 위험함수의 가정에서 출발하므로 비례위험함수 회귀모형(Cox’s proportional hazards regression model)이이라고도 한다. 일반적으로 Cox 모형은 \(t \)시점에서의 로그(log)위험함수를 여러 예후변수들의 선형식으로 표현한다(송해향 외, 1996).

\[h_i(t) = h_0(t) \exp(\beta_1 z_{i1} + \beta_2 z_{i2} + \cdots + \beta_p z_{ip}) \quad \cdots \text{<수식 3>\hspace{1cm}}
\]

(여기서 \(\beta = (\beta_1, \beta_2, \cdots, \beta_p) \) : 회귀모형계수, \(h_0(t) \)는 기저위험함수)
<수식 3>에서 회귀계수 \(\beta \)는 다른 변수들의 영향을 보정한 후 해당 변수만의 위험계수에 대한 영향을 나타낸다. 회귀계수가 양의 부호를 가질 때 위험계수 값이 커지므로, 해당 변수의 값이 클수록 위험을 증가시키는 의미를 의미한다. 각 변수의 유의도(귀무가설 \(H_0: \beta = 0 \))는 추정 회귀계수를 표준오차로 나눈 통계량을 통해 검정한다. 여러 공변수가 있을 때, 이 변수들 중에서 위험계수, 즉 생존에 유의한 영향을 주는 변수들만을 선택하기 위해서는 단계 적으로 유의한 변수는 신정하고 유의하지 않은 변수는 제거하는 다단계변수 선택법을 통해 유의한 변수를 선택한다.3)

또한 비례위험모형에서는 각 변수 \(z \)가 생존에 미치는 영향력을 상대위험도(hazard ratio)라고 하며, \(\exp(\beta) \) 값으로 각 변수의 상대위험도를 계산한다. 예를 들어 두 환자의 공변수값을 비교해 볼 때 다른 모든 변수의 수치는 동일한 반면에 첫 번째 환자는 위약을, 두 번째 환자는 치료효과가 있는 약을 복용하였다면, 이 두 환자의 위험합수의 비는 다음과 같이 치료에 대한 효과로써만 표현된다. 이 위험합수의 비가 1에 가까우면 그 변수는 생존과 무관하다.

\[
\frac{h_1(t)}{h_2(t)} = \frac{h_0(t) \exp(\beta_1 + \beta_2 z_2 + \cdots + \beta_n z_n)}{h_0(t) \exp(0 + \beta_2 z_2 + \cdots + \beta_n z_n)} = \exp(\beta_1) \cdots \text{(수식 4)}
\]

생존분석 설계자가 임의의 종료시각을 미리 설정하고 실험에 임하는 경우, 종료시각까지 사망되지 않은 자료에 대해서는 그 생존기간이 절단된다(체1유형의 절단). 반면에 설계의 계획 단계에서 종료시각을 결정하는 대신 관측되는 개체의 수를 미리

3) 다단계변수 선택법에는 한계적 변수를 선정하여 모형에 추가해 가는 forward(step-up)방법, 모든 변수를 포함시킨 모형에서 한계적 변수를 제거해 가는 backward(step-down)방법, 앞의 두 방법을 결합시킨 stepwise 방법이 있다. stepwise 방법은 forward 방법과 같은 방식으로 변수를 추가해 가지만 몇 단계 다른 변수들의 추가 후에 이 변수가 더 이상 필요치 않아 삭제될 수 있는가를 검토한다. 이 중 stepwise방법이 가장 널리 쓰이고 있다(홍해영, 1995).
경랍 수도 있는데 이런 경우를 제2유형의 절단이라고 한다. 제1유형의 절단의 경우 절단자료의 생존기간은 사전적으로 정한 종료 시각까지의 시간결과로 간주하며, 제2유형의 절단의 경우에는 마지막 사망으로 관측된 개체의 생존기간을 절단된 개체의 생존기간으로 간주하게 된다.

제1유형의 절단자료만을 포함하고 있는 경우에 총 n개의 표본 중 사전적으로 결정된 종료시각 t' 이전에 사망이 관측된 k개의 표본에 대해서는 개별 표본의 생존기간을 순서대로 $t_1 < t_2 < \cdots < t_k < t'$와 같이 배열할 수 있다. 관측이 절단된 나머지 $n-k$개의 표본에 대해서는 생존기간을 t'로 측정하며, t시점까지 사망이 관측되지 않은 표본들의 점합을 $R(t)$라고 하면, $R(t)$에 포함된 임의의 생존 표본 중에 t표본이 t시점에 사망하게 될 확률은 다음과 같다.

\[
\frac{h(t, x_i)}{\sum_{i \in R(t)} h(t, x_i) \cdot \sum_{j \in R(t)} \exp(\beta x_j)} \quad \cdots \quad <\text{식 5}>
\]

Cox의 비례위험모형은 위험합수들에 대한 비례관계만을 명시하였을 뿐 관측치들에 대한 완전한 확률모형이 아니기 때문에 모수(β)에 대한 완전한 우도함수가 유도되지 못한다. Cox는 조건부 우도(conditional likelihood)와 편우도(partial likelihood) 하에서의 추정과 검정이론을 개발하였다. 그가 제시한 편우도함수는 다음과 같다. 이 식을 최대화하는 최우추정치는 접근적으로 정규분포 한다.

\[
\log L(\beta) = \frac{\exp(\beta x_i)}{\sum_{j \in R(t)} \exp(\beta x_j)} \quad \cdots \quad <\text{수식 6}>
\]

$$R^2 = 1 - \exp\left(-\frac{G^2}{n}\right) \quad \cdots \quad \text{수식 7}$$

(G^2: 우도비 카이제곱 통계량, n: 표본수, $0 < R^2 < 1$)

민간개발의 입지를 예측하기 위한 방법론을 정립하고 적용하는 데 있어서 통계모형과 GIS 기법을 결합할 필요가 있다. 따라서 민간개발의 입지선택의 문제를 확률선택 모형으로 해석할 수 있는 통계적 방법론을 적용할 필요가 있다. 토지이용변화 관련 연구에서는 주로 로지스틱 회귀모형을 이용하여 토지이용변화요인을 추정하고 있다. 그러나 앞서 살펴본 바와 같이 의학 분야를 중심으로 환자의 생존에 미치는 영향을 분석하는데 많이 적용되고 있는 생존분석의 비례위험모형을 개발선택의 문제에 적용함으로써 개발 시점의 문제를 분석에 반영할 수 있다. 비례위험모형을 1990년대 수도권 택지개발의 문제에 대응시켜 보면서, 환자의 질병에 해당

4) 일반적으로 선형회귀모형에서 R^2는 독립변수가 종속변수의 변화를 설명하는 데 기여하는 정도로 해석되지만, 비선형회귀모형에서 제시되는 이 수치는 독립변수와 종속변수간 연관성을 의미할 뿐이다. 이 기호는 모형의 개체적인 설명력을 반영하는 수치는 아니지만, 모형간 상대적 비교에는 활용할 수 있다.
하는 것은 타지개발에 큰 영향을 준 1994년 준농림지 규제환하라
고 볼 수 있다. 또한 환자의 특성변수 및 처방변수는 각각 개별
토지의 물리적·임지적·기반시설 특성과 공영택지개발 등과 같은
정책적 변수로 대응시킬 수 있다. 비례위험모형을 개발 문제에 적
용하여 도출한 생존확률은 해당 결과의 보전확률로 이해할 수 있
으며, 생존확률이 낮을수록 개발시점이 단축되는 것으로 해석할
수 있다. 이와 같이 비례위험모형을 이용하면 과거 수도권 민간개
발에 영향을 주었던 각종 요인을 실증적으로 확인할 수 있으며,
이러한 요인이 결합되는 추정모형을 정립할 수 있다. 이러한 개발
확률모형의 결과는 개발수요에 대한 예측 또는 계획적 공급량과
결합되어 지역별·시기별 민간개발 임지를 예상하고 도시성장관리
를 위한 택지개발 대상지역을 확인하는 데 활용할 수 있을 것이
다. 이러한 과정에서 지리정보자료의 활용과 지리정보시스템을
이용한 자료가공 및 분석, 분석결과의 시각화는 필수적으로 요구
된다.

Ⅲ. 연구설계

1. 사례지역 및 분석자료

연구의 교외화 등으로 개발압력이 높아 개발시점을 연구대상으
로 하여 비례위험모형을 적용할 수 있는 연구대상지역을 서울을
중심으로 하는 80×80km 범위 내의 9개 시군지역(용인·화성·양주·
고양·김포·파주·양주·포천·남양주)의 준농림지역으로 한정하였다.

우선 공간자료는 수치지형도를 기본도로 하여 가용지 분석을
수행하기 위해 도지피복도, 국토이용계획도, 도시계획도를 활용하
였으며, 분석표본을 설정하기 위해 공영택지개발사업과 민간주택

- 10 -
건설사업의 위치도를 분석목적에 맞게 작성하였고, 속성자료는 ‘대한민국 전자정부 인터넷정보공개’를 통해 수집한 경기도 31개 시군의 주택건설사업 계획승인대장 자료를 기초로 물리적 특성 등 권역을 단위로 하는 거시 분석자료를 구축하고, 단지명, 지번, 홍인일자료를 구축하였다. 5)

1994년부터 2002년까지 미시분석 대상지역에서 이루어진 민간 주택건설을 기계발지 표현과 개발가용지 표본으로 구분하여 생존분석이 적합한 표본으로 구성하였다. 개발가용지 표본을 추출하기 위해 일반적으로 개발가능지의 분석에서 적용하는 규제적 제약조건과 물리적 제약조건 중에서 미개발지의 용도지역규제를 중심으로 가용지 분석을 수행하였다. 용도지역규제만을 기준으로 분석한 개발가용지 도면에서 민간 주택건설 가능지역 표본을 추출하기 위해서 국토계획및이용관련법률에 의한 관리지역 개발행위가규모인 3만㎡ 이상을 기준으로 설정하고, 각 폴리곤의 중심점을 찾아 민간개발 주택건설가능지의 포인트 주제도를 작성

5) 경로공개 정보 및 처리결과 등의 내용은 대한민국 전자정부 인터넷정보공개를 참조한다.
(http://info.egov.go.kr/invindex_new.html)

6) 민간주택건설사업(기계발지) 표본자료의 구축절차는 다음과 같다:
 ① 주택건설사업승인대장자료의 지번과 단지명을 확인
 ② 지번별로 분석하여 해당 주택건설사업의 위치를 수치경도표에서 점을 빼어, 민간주택건설 사업지 포인트 주제도를 작성
 ③ 주택건설사업승인대장의 시험변수와 규모변수 등 속성정보와 연계

- 11 -
성하였다. 표본 구축 결과, 505개의 기기발전 표본과 1,276개의 개발가용지 표본이 구축되었다. 각각의 표본은 다음 <그림 2>와 같이 분포하고 있다.

<표 1> 분석 자료

<table>
<thead>
<tr>
<th>자료유형</th>
<th>자료명</th>
<th>자료원</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>공간자료</td>
<td>수지자원도</td>
<td>국립지리원</td>
<td>총적 12,5000</td>
</tr>
<tr>
<td></td>
<td>도지자원도</td>
<td>환경부</td>
<td>환경지리정보실명</td>
</tr>
<tr>
<td></td>
<td>국토해양계획도</td>
<td>경기도</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>도시계획도</td>
<td>경기도</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>국립도시개발사업위치도</td>
<td>경기도</td>
<td>1981-2002년</td>
</tr>
<tr>
<td></td>
<td>수도권 교통 네트워크</td>
<td>건설교통부</td>
<td>-</td>
</tr>
<tr>
<td>속성자료</td>
<td>주택건설사업계획승인대장</td>
<td>경기도 시군</td>
<td>인터넷 정보공개청구</td>
</tr>
<tr>
<td></td>
<td>통계연보</td>
<td>경기도 시군</td>
<td>시군별 연구 및 인프라</td>
</tr>
<tr>
<td></td>
<td>내지개발계획지구조사</td>
<td>건설교통부</td>
<td>2003년 8월 기준 자료</td>
</tr>
<tr>
<td>기타</td>
<td>도시기본계획 보고서</td>
<td>경기도 시군</td>
<td>인구예측결과</td>
</tr>
<tr>
<td></td>
<td>인터넷 지번도</td>
<td>사이버맵림</td>
<td>www.cybermap.co.kr</td>
</tr>
</tbody>
</table>

<표 2> 분석 표본

<table>
<thead>
<tr>
<th>표본 유형</th>
<th>표본 설명</th>
<th>개수</th>
</tr>
</thead>
<tbody>
<tr>
<td>기기발전</td>
<td>비도시지역 민간주택건설사업지 (1994-2002 주택건설사업계획승인대장)</td>
<td>505</td>
</tr>
<tr>
<td>가용지</td>
<td>비도시지역 30,000㎡ 이상 미개발지 (2009년 자료기반 개발가용지)</td>
<td>1,276</td>
</tr>
<tr>
<td>개발허용지</td>
<td>국토이용 및 도시계획상 개발규제지역 (용도지역도상 도시·농단·자연보전) 2000년 기준 기기발전 (도지자원도상 시가지)</td>
<td>분석에서 제외</td>
</tr>
</tbody>
</table>
2. 분석변수 선정

비례위험모형에서 종속변수는 양적 변수인 생존기간과 정적 변수인 변화여부의 곱의 형태로 설정된다. 토지개발 문제가 비례위험모형을 적용할 때 있어서 생존기간은 토지가 미개발상태로 남아 있는 기간으로 대응시킬 수 있다. 준농림지역 규제완화 이후의 민간개발에 초점을 맞추기 위해 준농림지 규제완화가 시행되기 시작한 1994년 1월 1일을 시작시점으로 설정하고 준농림지역이 관리지역으로 편입되기 직전 시점인 2002년 12월 31일을 종료시점으로 하여 종속변수 자료를 구성하였다. 이 기간 내에 주택건설사업계획승인을 받은 표본의 정적 변수는 1이며, 미개발상태의 가용지로 남아 있는 표본의 정적 변수는 0으로서 중도절단자료 (censored data)로 처리된다.

민간주택건설사업의 입지와 시점에 영향을 미치는 독립변수를 선정하기 위해서 우선 토지이용변화 관련 현행연구에서 채택한
변수를 검토하였다. 7) 측정이 용이하고 변수간 비교가 가능하도록 공간 변수를 중심으로 위치의 물리적·임지적·기반시설·정책적 특성을 반영할 수 있는 변수를 측정하였다.

개발학률을 결정하는 가장 대표적인 변수는 표고 및 경사와 같은 물리적 제약조건이다. 일반적으로 표고 및 경사가 높은수록 백지 조성시 절토 및 성토량이 많아지므로 개발비용을 증가시킨다. 개발비용의 증가는 개발수익의 감소로 이어지기 때문에 개발학률은 낮아진다. 정제윤(2001)이 작성한 고도 및 경사도 도면자료에서 각 표본 중심의 표고 및 경사도 변수를 Arcview의 'Get Grid Value Extension 2'를 이용하여 추출하였다.

수도권 주택도시 서울과 부산소시 수원과 인천까지 접근성 및 기반시설 접근성이 높은 지역은 해당 사업지의 교통 및 서비스 접근성 등이 높아 주거지로서의 매력도를 증진시키기 때문에 우선적인 개발대상지가 된다. 해당 사업지로부터 서울의 도심(서울시청)과 부산소시(강남구청, 영등포구청)까지의 거리를 측정함으로써 수도권 주택도시 서울의 영향요인을 파악하였다. 추가적으로 부산소시 인천과 수원의 영향력을 확인하기 위해 인천과 수원까지의 거리를 측정하였다. 직선거리로 측정하기 위해서 Arcview의 'Nearest Features with Distance and Bearings' 스크립트를 이용하였으며, 네트워크 거리는 수도권 광역교통네트워크망 자료를 바탕으로 각 표본의 중심점과 각 공간변수의 중심점간의 최단 거리를 'Multi-origin to Multi-destination along network' 스크립트를 이용하여 측정하였다.

도로 및 철도와 같은 기반시설과 공원, 쇼핑센터 등 공공시설과

의 근접성은 주거밀집지역에 있어서 주요한 기반시설 변수라고 볼 수 있다. 본 연구에서는 도로변수에 초점을 맞추어 기반시설 변수를 구축하였다. 고속도로 접근성은 진출입이 가능한 IC까지의 거리를 측정하였으며, 도로접근성 변수는 일반국도와 지방도까지의 거리를 측정하였다. 도로 및 IC와의 거리가 멀어질수록 개발수익은 낮아지며, 따라서 개발확률은 작아지는 반비례 관계에 있기 때문에, 거리로 측정되는 기반시설 변수의 부호는 음수가 될 것으로 예상된다.

민간개발에 영향을 미친 정책변수를 설정하기 위해서 규제 위주의 정책수단과 유도 위주의 정책수단을 대표하는 수도권정비권역규제 변수와 공영택지개발사업 변수를 도입하였다. 우선, 수도권정비권역규제의 정책수단을 도출하기 위해서 신도시 건설 이후 준농림지역의 민간주택건설이 공영택지지구와 인접해서 입지하는 현상에 주목하였다. 공영택지지구와 민간주택건설사업 지구의 접근성은 기반시설 부임승차와 공영개발의 공정적 외부효과를 매개로 설명할 수 있다. 민간 개발업자의 측면에서 보면, 과거 제도적 허점을 이용하여 신도시를 포함한 대규모 백지개발지구 외곽지역에서 공영개발이 제공하는 기반시설과 공공시설에 비용을 제대로 부담하지 않고 입지할 수 있었기 때문에 아파트를 건설하고 분양할 수 있었다. 이와 같이 공영택지지구 주변지역은 민간 주택건설이 개발이익을 극대화할 수 있는 입지조건이 높은 지역이 되었다. 공영택지변수의 영향력을 계량화하기 위해서는 우선 주변지역에 기반시설과 공공시설을 매개로 영향력을 미치는 최소 면적 20ha 이상의 공영택지지구가 주변 개발에 영향을 미치는 것으로 가정하고 거리를 측정하여 자료를 구축하였다.8)

8) 20ha 이하의 공영택지지구에서는 지구의 간선시설이 설치된 사례가 없다(전제목, 2001).
表 3 민간주택건설사업 미사 분석 변수

<table>
<thead>
<tr>
<th>변수</th>
<th>변수명</th>
<th>측정</th>
<th>단위</th>
<th>예상</th>
<th>부호</th>
</tr>
</thead>
<tbody>
<tr>
<td>평리</td>
<td>Elevation</td>
<td>-표준중심의 표고</td>
<td>m</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>평리</td>
<td>Skope</td>
<td>-표준중심의 경사</td>
<td>%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>입지</td>
<td>CBD</td>
<td>-표준중심-서울 시절 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>입지</td>
<td>SubCBD</td>
<td>-표준중심-서울 경남, 영등포 부도심 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>입지</td>
<td>Subcity</td>
<td>-표준중심-인천, 수원 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>입지</td>
<td>Admin</td>
<td>-표준중심-행정시군 행정중심 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>기반시설</td>
<td>Road</td>
<td>-표준중심-일반 국도 및 지방도 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>기반시설</td>
<td>IC</td>
<td>-표준중심-IC 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>경제</td>
<td>Public</td>
<td>-표준중심-최근철 공영택지지구 직선(네트워크) 거리</td>
<td>km</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>경제</td>
<td>RA1</td>
<td>-지역매매지역: RA1-1, RA2-0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>경제</td>
<td>RA2</td>
<td>-상생관리지역: RA1-0, RA2-1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>경제</td>
<td>-</td>
<td>-지역매매지역: RA1-0, RA2-0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

수도권정비계획법 규정의 주택건설의 입지에 간접적인 영향을 미친다고 볼 수 있다. 권역의 성격상 과밀화제한구역과 자연보전구역은 주택건설의 시점을 늦추는 효과를, 성장관리구역은 주택건설의 시점을 앞당기는 효과를 가져왔을 것이다. 각 사업대상지별 자료에 수도권정비계획을 바탕으로 반영하여 권역변수의 부호와 상대적 위험도를 확인함으로써 수도권정비계획과 주택건설사업의 개발시점간 관계를 삼중적으로 검증할 것이다.

3. 입지적용방식의 구조

개발시점을 고려한 입지적용방식을 정립하기 위해서는 개발량과 개발영향을 모두 고려해야 한다. 개발입지적용방식의 구조는 <그림 3>과 같다. 택지수요량은 인구·고용예측을 기초로 택지수요량을 추계한 각 시군별 도시기본계획 등에서 설정된 택지량을 수용하여 반영하였다. 본 연구에서는 개발적용방식에 초점을 맞추어 개발시점모형을 확률적변동모형으로 변환하고, 필요에 따라 적절한 기반시설·정책적 변수가 포함되는 비례위험모형을 구
축하였다. 이와 같은 과정을 통해 개발계획모형에 기초하여 백지 수요(개발량)를 개발사업가능지를 공간단위로 하여 배분하였다.

<그림 3> 백지개발 예측모형의 구조

개발업자의 개발시점 결정의 손익분기점 및 이윤극대화 기준을 각각 <수식 8>과 <수식 9>와 같이 표현할 수 있다. 직접적인 자료구득의 한계가 있는 개발도시와 미개발도시의 수입과 비용의 추정을 위해서 관찰 및 추정이 가능한 필자의 물리적 특성
\[P(i, T) \], 엽지 특성\[E(i, T) \], 기반시설 특성\[Q(i, T) \], 공간정책 특성
\[G(i, T) \]과 관찰되지 않는 변수\[\varepsilon(i, T) \]가 특정 필자의 개발수익, 개발비용, 미개발도시의 가치에 영향을 미친다고 가정한다. 이하
한 가정하에서 순기대개발수익\[V(i, T) \]과 미개발도시수익
\[A(i, T) \]은 <수식 10>의 함수형태로 나타낼 수 있다.

손익분기점 기준: \[V(i, T) - \sum_{t=0}^{\infty} A(i, T+t) \delta^{T+t} > 0 \cdots <\text{수식 8}> \]

이윤극대화 기준: \[V(i, T) - A(i, T) > \delta V(i, T+1) \cdots <\text{수식 9}> \]

\(V(i, T): T\)시점 \(i\) 필지의 순기대개발수익, \(A(i, T): T\)시점 \(i\) 필지의 미개발도시수익, \(\delta \): 할인율

9) 경제적 관점에서 민간에서개발을 허락하면 개발구체의 목표는 이윤극대화이며, 미개발 도지를 소
유하고 있는 민간 주택개발업자는 이윤극대화 목표를 달성하기 위해서 역시기마다 미개발도시의
개발비용을 이산화했다. 이러한 상황은 기대수익에서 개발비용과 미개발의 기회비용을 계산한
순기대가치가 구매되는 시점에서 개발을 결정하는 동적 최적화 문제(dynamic optimization
problem)로 이해할 수 있다(Irwin and Bockstael, 2002).
\[V(i, T) = R(i, T) - C(i, T) = f[P(i, T), L(i, T), Q(i, T), G(i, T), \epsilon(i, T)] \]
\[A(i, T) = g[P(i, T), L(i, T), G(i, T), \epsilon(i, T)] \quad \ldots \quad \text{<수식 10>} \]

\[P(i, T) = \Pr[V(i, T) - A(i, T) + \epsilon(i, T) > \delta V(i, T + 1) + \epsilon(i, T + 1)] \quad \ldots \quad \text{<수식 11>} \]

로짓모형을 이용한 통계분석을 통해서도 토지의 개발확률에 미치는 변수의 영향력(계수)을 추정할 수 있지만, 토지개발의 시점 차이를 변수에 반영하지 못한다. 따라서, 개발여부와 개발시점을 동시에 고려할 수 있는 생존분석을 적용하여 주택건설의 입지와 시점결정에 영향을 미치는 요인을 분석하였다. 개발예측이 높은 지역에서는 토지개발 여부보다는 토지개발의 시점이 보다 중요한 의사결정기준이 된다. 점적 변화의 시점을 고려할 수 있는 생존분석 방법론은 토지개발의 문제를 보다 정확하게 해석하는데 매우 유용하다. 실험분석 모형을 정립함에 있어서 미개발토지의 가치와 개발토지의 가치는 해당 점지가 갖고 있는 여러 특성변수에 의하여 좌우된다. 민간개발업자가 이중데널화를 의사결정 기준으로 하고, 점지의 공간적 특성을 고려하여 개발 결정을 내릴 확률을 다음 <수식 12>과 같이 표현할 수 있다.

\[P(i, T) = \Pr[f(Z(i, T); \beta) > \eta(i, T)] \quad \ldots \quad \text{<수식 12>} \]

\((Z(i, T); T시점\ i\ 점지의 특성, \beta\ 특성변수의 계수, \eta(i, T) = \epsilon(i, T + 1) - \epsilon(i, T))\)

여러 생존분석 모형 중에서 비례위험모형의 장점은 시간 분포를 사전적으로 결정할 필요가 없다는 점이다. 또한 모든 점지에 동시에 영향을 미치는 외부적인 사회경제변수는 기저위험함수에 포함되기 때문에 계수 추정과정에서 제외할 수 있는 장점이 있다.
이러한 이유로 비례위험모형을 이용하여 개발시점 결정 모형을 다음과 같이 구축하였다. \(i \) 필지가 \(T \) 시점에 개발될 확률 \(h(i,T) \)은 다음 <수식 13>에 따라 결정된다.

\[
\ln h (i, T) = \beta_1 P_i + \beta_2 L_i + \beta_3 Q_i + \beta_4 G_i \quad \cdots \quad \text{<수식 13>}
\]

\(P_i : \) 물리적특성, \(L_i : \) 입지특성, \(Q_i : \) 기반시설특성, \(G_i : \) 경제특성

비례위험모형의 위험률 함수 \(h_i(t) = h(t) \cdot \exp(\beta X_i) \)는 시간적으로 변화하는 변수가 없을 경우 다음 생존확률함수로 전환할 수 있다.

\[
S_i(t) = [S_o(t)]^{\exp(\beta X_i)} \quad \cdots \quad \text{<수식 14>}
\]

\(S(t) : \) \(t \) 시점 필지의 생존확률, \(X_i : i \) 필지의 특성변수, \(S_o(t) : \) 기저 생존함수

IV. 분석결과

1. 수도권 민간주택건설 입지에 관한 기초분석

1994년에서 2002년까지 9개 시군에서 승인된 주택건설사업 종류에서 위치를 확인한 수 있는 505개 기계발지와 1,276개의 미
개발지의 기초통계량은 다음 <표 4> 및 <표 5>와 같다. 각 변수
에 대한 \(t \)-점정을 통해 기계발지와 미개발지간의 평균 차이 검정
을 시도하였다. 모든 변수에 대해 두 표본 집단간 평균의 차이가
1% 수준에서 유의한 것으로 분석되었다. 즉, 표고 및 경사가 낮을
수록, 입지 및 기반시설 접근성이 높을수록, 공영개발사업지와의
 접근성이 높을수록 개발될 가능성이 높다고 해석할 수 있다.

505개의 기계발 사업지구의 변수 특성을 살펴보면, 평균적으로
표고 79m, 경사도 5%인 물리적 조건에서 도심·부도심·부핵도시·
해당 행정구역 중심에서 적선거리로(네트워크 거리로) 각각
20(33), 25(29), 25(31), 7(10)km, 고속도로 IC와 일반국도 및 지방
도로부터의 평균 11(14), 1(1)km, 20ha 이상의 공영택지지구로부터
는 5(8)km 지점에서 사업이 이루어졌다. 10) 기계발지의 거리변
수 중에서 도로변수와 공영택지지구 변수 값이 작게 나타나고 있
어, 기계발 민간주택건설사업지는 대체로 도로와 공영택지지구와
의 접근성에 가장 많은 영향을 받을 것으로 예상할 수 있다.

그러나, 단일변수 검정결과는 종목 또는 상호에 따른 변수들 간의
관계를 고려하지 못하므로 도로와 공영택지변수가 민간주택건설
의 임지에 미치는 한계적인 영향력을 확인할 수 없다. 보다 정확
한 분석을 위해서는 다변량 분석법인 비례위험모형에 의한 분석
결과에 포함되는 상대위험도(hazard ratio) 지표를 해석하여, 각
공간변수의 민간주택건설의 임지와 시점에 미치는 영향을 동시적
으로 분석할 필요가 있다.

<표 4> 기초통계량 (적선거리)

<table>
<thead>
<tr>
<th>구분</th>
<th>변수명</th>
<th>(단위)</th>
<th>기계발지 평균</th>
<th>비계발지 평균</th>
<th>Pr></th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>골리 변수</td>
<td>Elevat</td>
<td>(m)</td>
<td>79</td>
<td>115</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>(%)</td>
<td>5</td>
<td>7</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>입지 변수</td>
<td>CBD</td>
<td>(km)</td>
<td>29.34</td>
<td>32.22</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>SubCBD</td>
<td>(km)</td>
<td>25.02</td>
<td>31.40</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Subcity</td>
<td>(km)</td>
<td>25.48</td>
<td>36.57</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Admin</td>
<td>(km)</td>
<td>7.48</td>
<td>9.84</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>기반시설 변수</td>
<td>IC</td>
<td>(km)</td>
<td>10.51</td>
<td>19.87</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Rood</td>
<td>(km)</td>
<td>0.97</td>
<td>1.45</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>정책 변수</td>
<td>Public</td>
<td>(km)</td>
<td>4.85</td>
<td>9.84</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>RA1</td>
<td>디미</td>
<td>0.15</td>
<td>0.65</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>RA2</td>
<td>디미</td>
<td>0.62</td>
<td>0.69</td>
<td></td>
<td>0.0034</td>
</tr>
</tbody>
</table>

10) 적선거리보다는 실제의 이동을 고려한 네트워크 거리값이 크게 나타난다.
1994년부터 2002년까지 미시분석대상지역에서 승인된 민간주택
건설사업의 임지는 <그림 4>와 같이 분포하고 있다. 각 시기별
평균중심점을 계산하고 도면에 표시하여, 1994년 이후 2000년까
지 규제특성에 따라 구분한 세 시기별 주택건설사업 대상지의 세
대수를 가중치로 하여 평균중심지를 분석하여 시기별 주택건설사
업업지의 확산방향을 간접적으로 확인하였다. 분석결과, 전체
기간 민간주택건설사업의 평균중심지는 서울시 강남구에 위치하
고 있다. 동물권지가 도입되었던 초기(‘94. 1~’97.8)에는 중심점의
위치가 서울시 성동구에 위치하는 것으로 나타나 남양주를 중심
으로 수도권 동부권역의 개발이 우세하였음을 보여준다. 중기
(‘97.9~’00.9)에는 중심점이 성남시로 이동하고 있어(표 6), 용
인을 위한 수도권 남부 1권역에서의 민간주택건설이 매우 활발
히 이루어졌음을 알 수 있다.

11) 평균중심은 동계학의 산술평균과 같은 개념으로 공간을 여러 개의 소지역으로 세분하고 각 지역
중심의 평균인 도는 위치를 x, y 좌표 상에 집으로 나타낸 것이다. 평균중심점의 위치는 공간구
조를 형성하는 구성요소들의 부계중심으로서 평균중심점의 위치변화를 확인하면 분포의 변화방향
을 파악할 수 있는데(하남, 1995).
<표 6> 시기별 입지 중심의 변화

<table>
<thead>
<tr>
<th>시기</th>
<th>사업 건수</th>
<th>가중평균 중심</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>홍경구역</td>
<td>X좌표</td>
</tr>
<tr>
<td>94.1~97.8</td>
<td>194</td>
<td>서울시 성동구</td>
</tr>
<tr>
<td>97.9~00.9</td>
<td>229</td>
<td>성남시 수정구</td>
</tr>
<tr>
<td>00.10~02.12</td>
<td>82</td>
<td>서울시 서초구</td>
</tr>
<tr>
<td>전체</td>
<td>506</td>
<td>서울시 강남구</td>
</tr>
</tbody>
</table>

1994년 이후 연도별로 민간 주택건설사업의 입지 관련 변수의 변화를 살펴보았다. 민간 주택건설의 물리적 제약요소인 표고 및 경사도의 시기별 평균값은 <그림 5>와 같이 변화하였다. 평균적으므로 경사도 6%와 표고 96m 이하의 지역에서 많은 사업이 이루어졌다. 개발시기별 거리변수는 <그림 6>과 같이 변화하였다. 전시기에 걸쳐서 도심 거리 36km, 공영택지지구 거리 11km, 도로거리 1km 이내의 지역이 민간주택건설이 주로 이루어진 지역임을 알 수 있다.
2. 수도권 민간주택건설 업지 확률모형의 개발

물리적 요인, 임지적 요인, 정책적 요인, 건설체계의 특성 등 다양한 변수가 주택건설사업의 임지와 시점을 결정하는 데 기여한다. 그러나 본 연구에서는 1994년 이후 비도시지역 민간주택건설사업의 특성을 공간적인 변수에 초점을 맞추어 민간주택건설의 임지 및 시점 결정 영향요인을 실증적으로 분석하였다. 보다 적합한 모형을 정립하기 위해서 모형에 투입되는 변수의 측정방식과 변수 선택방식에 따라 다음 <표 7>에서와 같이 5가지 모형으로 구분하여 분석을 진행하였다. 모형 I와 모형 II는 적선거리로 측정된 변수가 포함되는 모형이며, 모형 III와 모형 IV는 네트워크거리로 측정된 변수가 포함되는 모형이다. 모형 V는 규제권역 더미 변수를 추가하여 규제변수의 영향력을 확인하기 위한 모형이다.

<표 7> 비례위험모형의 구성

<table>
<thead>
<tr>
<th>모형</th>
<th>거리변수 측정방식</th>
<th>변수 선택방식</th>
<th>투입 변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>적선</td>
<td>Full</td>
<td>적선거리로 측정된 변수</td>
</tr>
<tr>
<td>II</td>
<td>적선</td>
<td>Stepwise</td>
<td>네트워크거리로 측정된 변수</td>
</tr>
<tr>
<td>III</td>
<td>네트워크</td>
<td>Full</td>
<td>적선거리로 측정된 변수</td>
</tr>
<tr>
<td>IV</td>
<td>네트워크</td>
<td>Stepwise</td>
<td>네트워크거리로 측정된 변수</td>
</tr>
<tr>
<td>V</td>
<td>네트워크</td>
<td>Full</td>
<td>규제권역 더미변수 추가</td>
</tr>
</tbody>
</table>
비례위험모형은 비례적 위험상수의 형태를 가정하기 때문에 비해위험모형을 적용하기 위해서는 모든 변수에 대해서 위험상수의 비례적인 관계가 성립하는지를 우선적으로 검토해야 한다. 미래성 가정을 검토할 수 있는 여러 방법 중에서 로그누적 위험함수 (LLS 주로: \(log[-log S(t)] \) versus \(t \))를 이용하여 시각적으로 검토하는 방법을 채택하여 분석표본을 비례위험모형을 이용하여 분석할 수 있는지 여부를 판단하였다. 이 그래프가 직선이든 육선이든 대체로 평행한 패턴을 보이게 되면 그 변수는 비례성 가정에 적합하다고 판단 내린다(송혜향 외, 1996). 분석에 포함되는 모든 변수에 대한 로그누적위험함수 그래프 그래프를 검토한 결과, 선이 교차할 정도로 비례성가정이 심하게 위배되는 변수는 없는 것으로 분석되었다. 따라서 분석표본은 비례위험모형의 비례성 가정을 충족시키는 것으로 확인되었다.

각 모형별 계수추정 결과는 <표 8>에 나타나 있다. 수도권정비
권역 규제변수를 추가한 모형 V의 추정결과를 중심으로 각 변수의 부호, 유의도, 상대적 영향력 등을 해석하였다. 유의수준 5%에서 유의한 변수는 경사(Elevation), 행정중심(Admin), 고속도로 (IC), 도로(Road), 공영택시 변수(Public)이며, 유의하지 않은 변수는 도심(CBD), 부도심(SubCBD), 규제권역변수(RA1, RA2)로 추정되었다. 이러한 추정결과를 바탕으로 과거 민간 주택건설사업
은 표고 및 경사가 낮으며, 기반시설접근성 및 공영택지접근성
이 우수한 지역에서 우선적으로 이루어졌음을 확인할 수 있다. 입지 규제변수로 반영한 과밀재해권역변수(RA1)와 성장관리권역변수(RA2)의 부호는 예상대로 나왔으나, 통계적으로 유의하지 않은

12) 비례성 가정이 어긋나는 경우는 ① 공변량효과가 시간에 따라 변해가거나, ② 모형에서 상관되어 하는 공변수가 제외되었거나, ③ 여러 공변수의 교호작용효과가 유의한 모형에 고려되지 않았거나, ④ 위험함수의 형태가 지수형태가 아닌 다른 형태이어야 할 때 비례성 가정이 성립하지 않을 수 있다(송혜향 외, 1996).
변수로 확인되었다. 이러한 결과는 거시적인 권역구분과 권역별 입지규제를 기반으로 하는 수도권정비계획은 수도권 민간주택건설에 입지와 시점에 직접적인 영향을 미치지 못하였다는 사실을 입증하는 것이다.

변수의 측정방식의 차이에 따른 모형의 추정결과를 비교해 보면, 네트워크 거리를 이용해 구축한 변수를 투입한 모형의 경우에도 보다 많은 변수가 유의한 변수로 모형에 포함되었다. 변수의 측정 방식 및 변수선택방식과 관계없이 안정적으로 모형에 포함되는 변수는 일반도로, 고속도로, 공영택지 변수이다. 모형별 유의한 변수와 각 변수의 상대적 영향력을 비교해 보면, 모든 모형에서 도로접근성이 개발을 촉진시키는 효과가 가장 큰 변수로 분석되었 다. 모든 모형에서 모형의 전체 적합도를 나타내는 우도비 (Likelihood Ratio)는 모두 1% 내에서 유의한 것으로 분석되었으며, 모형에 포함되는 독립변수의 설명력을 직접적으로 나타내지 못하지만 종속변수와 독립변수간 연관성을 확인할 수 있는 지표인 Generalized R²는 모든 모형에서 대략 0.25~0.27의 수치를 보이고 있다.

모형 V에서 유의한 것으로 추정된 물리적 변수 표고 및 경사도의 증가가 개발확률의 감소에 미치는 영향에 대한 민감도 분석결 과는 <그림 7> 및 <그림 8>와 같다. 표고 및 경사도가 증가할수 록 개발확률의 감소폭은 점차 증가하는 것으로 나타난다. 다른 변수의 조건이 동일한 상태에서 표고가 311m 증가하거나 경사도가 24% 증가하면 개발확률은 50% 감소한다. 모형 V의 거리변수 중에서 유의한 기반시설 및 공영택지 변수에 대해 민감도 분석을 수행한 결과는 다음 <그림 9>과 같다. 다른 조건이 모두 동일할 때 일반 도로에서 3.8km, 고속도로 전입부에서 10.5km, 공영택지
에서 20.9km 멀어지면 대상지의 개발확률은 50% 감소하는 것으로 나타난다.

<표 8> 민간택지개발 추정결과

<table>
<thead>
<tr>
<th>모형 변수</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>계수 (β)</td>
<td>편향율 (β^2)</td>
<td>계수 (β)</td>
<td>편향율 (β^2)</td>
<td>계수 (β)</td>
</tr>
<tr>
<td>ELEVATION</td>
<td>-0.0032**</td>
<td>0.906</td>
<td>-0.0032**</td>
<td>0.906</td>
<td>-0.0032**</td>
</tr>
<tr>
<td>SLOPE</td>
<td>-0.0196</td>
<td>0.981</td>
<td>-0.02406</td>
<td>0.958</td>
<td>-0.02524</td>
</tr>
<tr>
<td>CHD</td>
<td>-0.1364**</td>
<td>0.879</td>
<td>-0.11699**</td>
<td>0.861</td>
<td>-0.09556</td>
</tr>
<tr>
<td>SUBURBAN</td>
<td>0.1370**</td>
<td>1.106</td>
<td>0.1370**</td>
<td>1.124</td>
<td>-0.02472</td>
</tr>
<tr>
<td>SUBURBAN</td>
<td>0.0046</td>
<td>1.094</td>
<td>0.00104**</td>
<td>1.011</td>
<td>-0.00091</td>
</tr>
<tr>
<td>ADMIN</td>
<td>-0.0093</td>
<td>0.906</td>
<td>-0.02628**</td>
<td>0.972</td>
<td>-0.02712**</td>
</tr>
<tr>
<td>K</td>
<td>-0.0196**</td>
<td>0.906</td>
<td>-0.11259**</td>
<td>0.900</td>
<td>-0.0454**</td>
</tr>
<tr>
<td>ROAD</td>
<td>-0.0196**</td>
<td>0.906</td>
<td>-0.01979**</td>
<td>0.921</td>
<td>-0.01997**</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>-0.0423**</td>
<td>0.929</td>
<td>-0.0033**</td>
<td>0.952</td>
<td>-0.0414**</td>
</tr>
<tr>
<td>R2</td>
<td>-0.3257</td>
<td>0.817</td>
<td>-0.21357</td>
<td>1.238</td>
<td></td>
</tr>
</tbody>
</table>

*** 1% 수준에서 유의, ** 5% 수준에서 유의, * 10% 수준에서 유의

<그림 7> 표고변수의 변동도

<그림 8> 경사도변수의 변동도

- 26 -
민간개발을 촉진시키는 데 기여한 변수를 분석한 결과, 민간개발은 경제적 임지 여건 등과 같은 거시적인 변수보다는 지역적인 기반시설 및 공영택지와의 인접성 등의 변수에 따라 입지하는 경향을 보이고 있다. 정책적 요인 중에서도 거시적인 관리구분과 관리별 임지규제를 통한 수도권정책계획 수단은 민간개발의 입지에 영향을 미치지 못하였으나, 미시적인 공간정책인 공영택지개발지구의 지정은 그 주변지역의 민간개발을 촉진시키는 데 기여하는 것으로 분석되었다. 이는 민간개발의 입지를 규제하거나 유도하는 데 있어서 미시적인 정책수단이 보다 효과적일 수 있음을 시사하는 결과이다. 비례위험모형을 이용하여 정립한 개발확률모형의 통계적 적합성의 측면에서 볼 때 5개의 모형 모두 개발확률모형으로 적용가능한 것으로 판단된다. 그러나 모형의 공간적 적합도 분석을 추가적으로 수행하여 개발임지예측에 보다 적합한 모형을 탐색할 필요가 있다. 이를 위해 추정 모형식의 결과를 1994년부터 2002년까지의 실제 민간주택건설의 공간적 분포와 비교하였다.13)

변수측정방법과 변수선택방법별로 구분되는 민간개발확률모형의 추정결과에 의해 선택된 임지와 실제 임지간의 적중률을 비교한 결과는 <표 9>에 제시되어 있다. 전체 지역의 모형간 적중률

13) 비교결과는 다음과 같다.
① 모형별로 도출된 추정계수를 이용하여 1994년 기준 민간개발가용지 1,781개 표본의 개발확률을 계산하였다.
② 실제 265개 민간개발의 공간적 분포와 비교하기 위해서, 개발확률 순서에 따라 전체 1,781개의 표본 중 50%의 임지를 선택하여 각각 모형으로 작성하였다.
③ 모형간 적합도를 비교하기 위해 전체 지역을 대상으로 추정된 개발임지와 실제 개발임지의 입지도를 계산하였다.
을 비교해보면, 모형 V의 적중률이 60%로 타 모형에 비해 다소 높은 것으로 나타나고 있다.

<그림 10> 모형 I의 공간적 적합도

<그림 11> 모형 II의 공간적 적합도

<그림 12> 모형 III의 공간적 적합도

<그림 13> 모형 IV의 공간적 적합도

<그림 14> 모형 V의 공간적 적합도 (전체 적합도)

<그림 15> 모형 V의 공간적 적합도 (지역적합도)
<표 9> 모형의 임지 예측율 비교

<table>
<thead>
<tr>
<th>시군</th>
<th>모형</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV (전체지역의 확률 순서)</th>
<th>V (하위지역의 확률 순서)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전체지역</td>
<td>58%</td>
<td>57%</td>
<td>58%</td>
<td>55%</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>고양</td>
<td>100%</td>
<td>100%</td>
<td>97%</td>
<td>97%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>용인</td>
<td>96%</td>
<td>96%</td>
<td>89%</td>
<td>94%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>김포</td>
<td>73%</td>
<td>73%</td>
<td>81%</td>
<td>81%</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td>광주</td>
<td>53%</td>
<td>49%</td>
<td>36%</td>
<td>36%</td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td>화성</td>
<td>47%</td>
<td>40%</td>
<td>40%</td>
<td>51%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>광주</td>
<td>0%</td>
<td>0%</td>
<td>13%</td>
<td>20%</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>양주</td>
<td>7%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>남양주</td>
<td>0%</td>
<td>0%</td>
<td>32%</td>
<td>0%</td>
<td>67%</td>
</tr>
</tbody>
</table>

추정한 개발확률모형이 잘 적용되는 지역은 고양, 용인, 김포 지역으로 분석되었으나, 나머지 지역의 적중률은 낮게 나타나고 있다. 이와 같이 지역별로 모형 적합도가 차이가 발생하는 이유는 두 가지로 해석할 수 있다. 첫째, 개발확률모형에 지역특성이 관련된 변수가 누락되어 있을 수 있다. 지역특성을 반영하는 규제권역 변수를 추가한 모형 V의 전체 지역 임지적합도가 다소 높은 것은 이러한 가능성을 시사하는 분석 결과이다. 모형 V의 경우에는도 지역별 임지 예측률의 편차가 여전히 존재하는 이유는 일부 지역에 개발확률이 높은 표본이 집중되어 있어 전체 지역의 개발확률의 순서에 따라 개발지역을 선정할 경우 일부 지역에 개발량이 과다하게 배분되거나 부족하게 배분되기 때문인다. 따라서 지역별 개발량을 하위 지역의 개발확률의 순서에 따라 배분하는 방식으로 모형의 적합도를 제고하였다.

<그림 14>과 <그림 15>를 비교해 보면, 하위지역의 개발확률의 순서에 따라 개발량을 배분한 결과가 실제의 개발패턴과 유사한 결과를 제시하고 있다. 특히 다른 모형에서 과소 분포지역이었
던 양주와 남양주의 공간적 적합도가 높아진 것을 확인할 수 있 다. 이러한 분석결과에 근거하여 ‘모형 V에 따라 도출한 개발확률
에 따라 개발량을 지역별로 배분하는 방식’을 제택하여 개발확률
모형을 적용하였다.

3. 수도권 민간주택건설 임지 확률모형의 적용

현행 도시계획 체제 하에서 도시성장관리정책을 집행할 수 있
는 가장 기본적인 수단은 용도지역제이며, 광역도시계획과 도시
기본계획에 의한 개발유도지역의 설정 및 2종 지구단위계획과 기
반시설연동계획에 의한 기반시설부담구역 등 계획적인 관리 및 집
행수단이 중점적으로 적용될 수 있다. 이와 같은 정책의 틀에 따
라서 용도지역제를 기준으로 개발가용지를 작성하여 민간 개발이
이루어질 수 있는 대상지를 1차적으로 도출하고, 민간 개발의 임
지선택 특성을 반영하여 정립한 개발확률모형과 택지수요예측량
을 적용하여 민간개발이 우선적으로 발생할 것으로 예상되는 지
역을 시점별로 확인하였다. 개발확률모형을 적용하는 지역은 수
도권 일부 지역(용인·화성·광주·고양·김포·파주·양주·남양주시)의
신개발 가능지대로 한정하였다.

개발량은 정책시나리오별로 동일하며 외생적으로 주어지는 것
으로 가정하여 도시기본계획 및 산행연구에서 제시된 택지개발수
요량을 각각의 정책시나리오별로 반영하였다. 또한 관리지역을
대상으로 정립한 개발확률모형에는 광역적인 임지특성을 반영하
는 변수가 포함되어 있기 때문에 타 용도지역의 개발임지결정에
도 적용될 수 있다고 가정하였다. 보다 정확한 개발임지 예측을
위해서는 개발확률을 결정하는 각각의 변수의 변화를 고려해야
하지만, 본 연구에서는 2002년 기준의 변수값이 유지된다는 전제
하에 개발확률을 도출하였다.
현행 용도지역 규제가 유지된다는 가정 하에 작성된 시나리오 I
에서의 개발확률분포는 <그림 16>과 같다. 지역별 개발확률의
순서에 따라 시기별 개발수요량을 배분하여 작성한 개발 임지 예
상지역은 <그림 17>, <그림 18>, <그림 19>에 나타나 있다.
2006년까지 수원시 주변지역의 용인 서북부 지역과 화성 동부지
역과 일산 신도시 주변지역 및 고양과 화주 경계지역 등지에서
추가적인 개발이 이루어질 가능성이 높은 것으로 분석되었다.

2001년과 2002년 사이에 지정된 16개의 택지개발예정지구 중
시나리오 분석대상지역에 해당하는 6개의 택지개발의 임지와 시
나리오 I 가정 하에 2006년 민간개발예상지역의 임지를 비교하여
공영택지지구의 민간개발 수용력을 확인하였다.1) 공영택지와 민
간개발예상지역이 일치하는 지역은 용인 홍북터, 화성 동탄, 양주
고을 등 3개 지역으로 확인되었으며, 택지지구 경계에서 1km 이
내의 지역에 포함되는 개발예상지역이 63%에 이르는 것으로 분
석되었다.

14) 개발전도예측을 위한 분석 결과는 다음과 같다.
① 시나리오별 개발가용지 분석 자료의 구축 시나리오별 개발가용지임 개발단위 30만m²를 기준으로
함하여 시나리오별 표본을 설정하고, 각 표본의 공간변수 (X) 을 추가로 구축하여
통계분석이 가능한 형태로 가공하였다.
② 개발확률의 계산: 제3장에서 공간적 직합도가 가장 우수한 모형 V에서 도출된 각 변수의 계
수값 (X)을 개발가용지의 개발확률 추정에 이용하였다. 비례위험모형을 통해 추정한 계수와
조직시나리오별, 개발가용지 표본의 특성변수를

\[S(t) = [S_0(t)]^{exp(\beta X)} \]

에 대입하여 각 원지의 미개발 확률을 계산한다.
③ 개발확률 분포도 작성: 통계분석에서 계산된 개발확률을 가용지 표본의 수록정보에 추가하여
2단계로 구분된 개발확률분포도를 작성하였다.
④ 개발임지 분포도 작성: 도시기본계획 등에서 정착목표로 제시되고 있는 인구수용계획을 근거로
하여 도시공급량을 시기별로 삼출한 시점별 개발량을 지역별 개발확률의 순서에 따라 비
분석 도면으로 작성하였다.
15) 2001-2002년에 분석대상 지역에 지정된 공영택지지구는 고양행신, 화성동탄, 용인중앙, 용인시천,
양주고을, 남양주가온 등 6개 지구이다.
개발계획구역 해체를 가정한 시나리오 II와 III의 분석결과, 서울과 인접한 곳에 위치하며 개발에 물리적 제약이 적은 고양, 김포, 남양주시에 분포하고 있는 개발계획구역의 개발확률이 매우 높은 것으로 분석되었다. 시나리오별로 2006년 민간개발이 예상 지역을 읍면동 단위로 파악한 결과, 용도규제의 변화에 관계없이 개발압력이 높은 지역은 과주 조리, 김포 고촌, 용인 수지·기흥, 화성 대안, 양주시 장흥, 광주시 광주읍 등지로 분석되었다. 16)

16) 시나리오 II, III, IV의 분석결과 도면은 생략하였다.
시나리오간 비교를 위해 도심거리별 개발예상지역 분포의 변화
을 분석하였다. 현행 용도규제 하에서는 수도권 북부지역에서는
도심에서 20-30km 권역에 위치한 고양, 김포, 남양주 지역의 추
가 개발이 남부지역에서는 30-40km 권역에 위치한 용인과 화성
지역의 개발이 예상된다. 개발계획구역이 해체가 되는 경우에는
(시나리오 II, III), 수도권 북부지역의 개발이 10-20km에서 이루
어질 것으로 예상되지만, 수도권 남부지역에 위치한 개발계획구
역의 개발압력은 높지 않은 것으로 분석되었다. 도시지역의 자연
녹지에서만 개발을 가능하게 할 경우에는(시나리오 IV), 수도권
남부와 북부 지역 모두에서 30-40km 권역에 위치한 각 지역의
기존 시가지 주변지역을 중심으로 위치하고 있는 자연녹지지역에
서의 개발이 예상된다.

2006년 기준 시나리오별 민간개발예상지역의 특성은 <표 10>
에 제시되어 있다. 각 변수의 평균값을 상대적으로 비교해보면,
시나리오 IV의 개발예상지역이 모든 측면에서 가장 불리한 임지
특성을 갖고 있다. 따라서 자연녹지지역으로 민간개발을 유도하
기 위해서는 정책적 개입에 의해 변동가능한 변수인 도로 및 공
영택지를 고려해야 한다. 예컨대 자연녹지지역의 도로접근성을
강화하기 위한 도로 확장사업을 추진할 수 있다. 민간개발예상지
역은 2002년까지 지정된 공영택지까지 평균 거리 1.3~2.5km와 최
대 거리 8.8~12.3km 범위 내에 임지할 것으로 예상된다. 즉 공영
택지 주변지역의 범위를 12.3km로 설정한다면 2006년 민간개발
예상지역이 모두 기반시설부담구역 내에 포함될 수 있을 것으로
판단된다.

각 지역별 30만㎡을 기준으로 설정한 개발단위를 기준으로 민
간개발이 예상되는 구역수는 <표 11>과 같다. 남부권에서는 용인
(33구역), 북부권에서는 김포(20구역), 동부권에서는 남양주(19구역)에 상대적으로 많은 민간개발이 이루어질 것으로 예상된다. 개발가용지 대비 구역수의 비율을 보면, 시나리오 IV의 남양주의 경우를 제외하고는 모두 각 가용지 시나리오에서 개발수요량을 수용할 수 있는 것으로 분석되었다. 민간개발예상지역 입지에측정과는 각 지역별로 제2종지구단위계획구역 등 계획적 개발을 위한 구역을 지정하는 데 참고할 수 있을 것이다.17)

<표 10> 시나리오별 민간개발예상지의 특성 (2006년)

<table>
<thead>
<tr>
<th>구분</th>
<th>변수 (단위)</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>시나리오 I</td>
</tr>
<tr>
<td>물리적</td>
<td>표고(m)</td>
<td>50.6 (182)</td>
</tr>
<tr>
<td></td>
<td>경사(%)</td>
<td>3.0 (13)</td>
</tr>
<tr>
<td>입지적</td>
<td>도심(km)</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>부도심(km)</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>부해도시(km)</td>
<td>24.0</td>
</tr>
<tr>
<td>평균중심(km)</td>
<td>7.3</td>
<td>6.6</td>
</tr>
<tr>
<td>기반시설</td>
<td>공식도로(km)</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>일반도로(km)</td>
<td>0.7</td>
</tr>
<tr>
<td>정책</td>
<td>공영택지(km)</td>
<td>1.3 (9)</td>
</tr>
</tbody>
</table>

주(1)는 평균값

17) 전설교통(2003)의 제2종지구단위계획수립지침에 의하면 제2종지구단위계획구역은 항주 5년내 개발 수요가 크게 증가할 것으로 예상되는 지역과 기반시설과 개발만해가 효과적이 개발이 예상되는 지역에 지정할 수 있다.
<표 11> 시나리오별 가용지 대비 민간개발예상지 비율 (2006년)

<table>
<thead>
<tr>
<th>구역</th>
<th>구역수</th>
<th>개발가용지 대비 구역수</th>
<th>시나리오 I</th>
<th>시나리오 II</th>
<th>시나리오 III</th>
<th>시나리오 IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>고양시</td>
<td>7</td>
<td>6%</td>
<td>2%</td>
<td>2%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>광주시</td>
<td>7</td>
<td>3%</td>
<td>3%</td>
<td>35%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>김포시</td>
<td>20</td>
<td>9%</td>
<td>7%</td>
<td>29%</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>남양주시</td>
<td>19</td>
<td>10%</td>
<td>4%</td>
<td>7%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>양주시</td>
<td>10</td>
<td>5%</td>
<td>2%</td>
<td>4%</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>용인시</td>
<td>33</td>
<td>6%</td>
<td>6%</td>
<td>19%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>파주시</td>
<td>14</td>
<td>3%</td>
<td>3%</td>
<td>14%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>화성시</td>
<td>12</td>
<td>4%</td>
<td>4%</td>
<td>35%</td>
<td>36%</td>
<td></td>
</tr>
</tbody>
</table>

* 각 구역의 기준면적은 300m².

도시성장관리정책이 포괄하는 용도규제를 통한 계획수단과 계획관리수단의 정책조합을 고려한 분석을 수행할 필요가 있다. 이를 위해서는 계획관리 정책의 공간적 효과를 계량화할 수 있는 기준을 설정해야 한다. 현행 기반시설부담구역 지정기준에 의하면 ‘중심지역(제2종지구단위계획구역·택지개발예정지구 등)의 경계로부터 1km 이내의 지역을 주변지역으로 지정하여 하나의 기반시설부담구역으로 지정한다.’이므로 근거로 민간개발예상지역 중에서 기반시설부담구역에 포함되는 비율을 정책의 공간적 효과로 가정하여 정책효과 분석을 수행하였다.

기반시설부담구역, 2008. 기반시설연동재정운영지침
구체적인 분석결과는 다음과 같다.
① 2002년까지 지정된 공영택지지구 경계를 기준으로 1km 범위를 설정하여 기반시설부담구역 도면을 작성하였다.
② 시나리오별로 도출한 2006년 민간개발 예상지역 도면과 ①에서 작성한 도면을 중심시각, 기반시설부담구역에 포함되는 민간개발 예상지역 도면상에서 확인하였다.
③ 기반시설부담구역에 포함되는 민간개발의 비율을 계산하여 시나리오별 개발의 관리수단 적응 효과를 비교하였다.
기반시설부담구역 관리수단의 적용범위를 정책효과로 가정하여 시나리오별 정책효과를 단순 비교해 보면, 시나리오 I (63%) > 시나리오 IV (53%) > 시나리오 II (45%) > 시나리오 III (45%)의 순서로 나타나 용도구역의 변경은 정책효과를 약화시키는 것으로 해석할 수 있다(<표 12>). 특히 개발제한구역 해제를 가정한 시나리오에서 기반시설부담구역 외곽에서 발생가능한 민간개발이 가장 많이 분포하는 것으로 나타나고 있다. 따라서 개발제한구역의 제한해제 또는 조정과정에서 지정되는 지역은 공영택지개발 또는 2종지구단위계획을 적용하여 계획적 관리를 추진해야 할 것이다.

공간적 변수에 초점을 맞추어 정립한 개발확률모형을 적용하여 민간개발익자를 예측한 결과를 도시성장관리정책을 수립하고 집행하기 위한 정책대상지역 및 정책효과를 확인하는데 제한적으로 적용해 보았다. 민간개발익자 예측결과의 적용근거 및 적용대상은 <표 13>에 요약하였다.

<표 12> 시나리오별 계획관리수단의 효과 예상

<table>
<thead>
<tr>
<th>시나리오</th>
<th>기반시설부담구역 & 민간개발예상지</th>
<th>비율 (A/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>시나리오 I</td>
<td>76</td>
<td>63%</td>
</tr>
<tr>
<td>시나리오 II</td>
<td>54</td>
<td>45%</td>
</tr>
<tr>
<td>시나리오 III</td>
<td>55</td>
<td>45%</td>
</tr>
<tr>
<td>시나리오 IV</td>
<td>64</td>
<td>53%</td>
</tr>
</tbody>
</table>

* 2006년 민간개발 사례수는 121 (A)
<표 13> 민간개발 임지예측결과의 활용방안

<table>
<thead>
<tr>
<th>적용대상</th>
<th>적용근거</th>
<th>본 연구의 분석결과 활용</th>
</tr>
</thead>
<tbody>
<tr>
<td>난개발 방지형 신도시 지정</td>
<td>"개발주체가 매우 높아 단발적인 소규모 개발에 의해 난개발이 일어나는 지역"으로서 개발면적 100만㎡ 이상의 지역 (국토연구원, 2000)</td>
<td>시니로오범·시점범 민간개발예상지역 중에서 공간적으로 군집화된 형태의 개발이 일어나는 지역 (시나리오별·시점별 계획예상지 도면 참조) (예) 화성 동탄·대안지역, 고양과 파주의 경제 지역</td>
</tr>
<tr>
<td>계획단위 민간개발 구역 지정</td>
<td>"2층정규단위계획구역은 5년 내 개발수요가 크게 증가할 것으로 예상되는 지역과 기반시설과 개발영역이 양호하여 개발이 예상되는 지역에 지정한다." (국토연구원, 2002)</td>
<td>개발목표모형을 적용하여 예측한 지역은 2층정규단위계획구역 후보지 (시나리오별·시점별 계획예상지 도면 참조) (예) 광주시 광주읍</td>
</tr>
<tr>
<td>계획관리단위 효과 평가</td>
<td>"중심지역의 경계로부터 1km 이내의 지역을 주변지역으로 지정하여 하나의 기반시설부담구역으로 지정한다." (국토연구원, 2002)</td>
<td>기반시설부담구역에 포함되는 민간개발의 비용 분석</td>
</tr>
</tbody>
</table>

V. 결론 및 정책적 시사점

서론에서 도시성장관리 차원에서 개발수요의 외연적 확산을 계획하고 환경친화적으로 수용하기 위해서는 고거 민간 개발의 임지요인에 대한 분석을 기초로 하여 향후 민간개발이 도시 외곽의 이러한 임지에서 어느 시점에서 이루어질 것인가를 예측할 필요가 있다는 연구목적을 설계하였다. 이를 위해 도시 주변지역의 개발 가능성을 대상으로 개발 시점을 반영하여 임지를 예측할 수 있는 방법론을 적용하여 민간개발이 우선적으로 발생할 수 있는 지역을 확인하였다. 본 연구의 주요 분석 결과는 다음과 같다.

첫째, 도시개발을 주도하고 있는 민간 주택건설의 임지요인을
비례위험모형을 적용하여 실증적으로 검증하였다. 민간개발은 광역적 임지 여건 및 수도권정비계획 수단 등과 같은 거시적인 변수보다는 지역적인 기반시설 및 공영택지와의 인접성 등의 변수에 따라 입지하는 경향을 확인하였다. 이는 민간개발의 입지를 규제하거나 유도하는 데 있어서 미시적인 정책수단이 보다 효과적일 수 있음을 시사하는 결과로 해석할 수 있다. 정책적 요인과 관련해서 도로 및 공영택지개발사업 등과 같이 정책적인 개입이 가능한 변수들이 민간개발을 촉진시키는 데 기여하였지만, 거시적인 권역구분과 권역별 입지규제를 통한 수도권 정비계획 수단은 민간주택건설의 입지에 직접적인 영향을 미치지 못하였다는 점을 검증하였다.

둘째, 비례위험모형을 이용하여 작성한 추정모형을 가용지의 개발화율을 예측하는 데 활용함으로써, 민간개발이 예상지역을 확인할 수 있는 방법론을 제시하고, 수도권의 개발압력이 높은 지역에 적용함으로써 유용성을 제시하였다. 수도권의 변화가능성과 도시계획제도의 개편을 통해 새로운 도입된 개발관리수단을 반영한 정책시나리오 분석을 수행하여 분석결과를 성장관리정책 대상 지역을 지정하고 개발관리수단의 효과 평가에 적용할 수 있는 방안을 제시하였다.

본 연구에서 도출한 분석결과의 의의 및 정책적 시사점은 다음과 같다.

첫째, 민간 주택건설의 입지요인에 대한 분석결과를 통해서 보았을 때, 민간개발은 광역적 임지 여건 및 수도권정비계획 수단 등과 같은 거시적인 변수보다는 지역적인 기반시설 및 공영택지와의 인접성 등의 변수에 따라 입지하는 경향이 있다. 따라서 민간개발의 입지를 규제하거나 유도하는 데 있어서 미시적인 정책
수단이 보다 효과적일 수 있음을 시사하는 결과로 해석할 수 있다. 또한 도로 및 공영택지개발사업 등과 같이 정책적인 개입이 가능한 변수들이 민간개발을 촉진시키기 때문에 기반시설계획과 공영택지지구지정을 통한 도시개발사업을 추진할 때, 기반시설 및 공영택지지구 주변지역에 대한 관리방안을 사전에 수립하는 것이 매우 중요하다.

둘째, 본 연구에서 적용한 민간개발입지 예측 방법은 장래 개발 수요를 계획적으로 수용하기 위한 거시적 수단(도시화예정지와 시가화예정지)과 미시적 수단(택지개발예정지구, 제2종지구단 위계획구역, 기반시설부담구역)을 적용하기 위한 정책대상지역의 설정 과정에서 참고할 수 있는 기초자료를 제공할 수 있을 것이 다.
참고문헌

국토개발연구원, 1981, 지역분석을 위한 계량적 접근방법
국토연구원, 2000, 수도권 도시산업관리와 신도시개발
국토연구원, 2002, 국토계획법 운용지침
김남진, 2003, GIS 설습: 아크뷰를 활용한 지도 제작과 공간분석, 서울: 한울출판사
김혜수-윤창진, 1999, (ESRI ArcView) 지리정보체계: GIS 설습, 서울: 대영사
김재수, 2002, SPSS for windows, SPRING, SPSS
김태수, 1999, SPSS for windows, SPRING, SPSS
김태수, 1996, SPRING, SPSS
김태수, www.cybermap.co.kr
김태수, 1993, www.cybermap.co.kr
김태수, 2001, www.cybermap.co.kr
김태수, 2001, www.cybermap.co.kr
김태수, 2003, www.cybermap.co.kr
김태수, 1992, www.cybermap.co.kr

- 40 -

Cho, K. H. and C. H. Yim, 2001, "Interpreting the Suburban Development Game in Seoul Metropolitan Area", *Proceedings of 1st World Planning Schools Congress in Shanghai*

